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Topological effects on statics and dynamics of knotted polymers
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Using dynamic Monte Carlo simulations, our results on the radii of gyration of knot polymers suggest that
prime and two-factor composite knots belong to different groups. From the studies of nonequilibrium relax-
ation dynamics on cut prime knots, we find that even prime knots should be classified into different groups,
such as (3,5,...), (4.,6,,...), and (5,7,,...), etc., based on their topological similarity and their
polynomial invariants. By scaling calculations, the nonequilibrium relaxation time is found to increase roughly
asp*?® wherep is the topological invariant length-to-diameter ratio of the knot at its maximum inflated state.

This prediction is further confirmed by our daf&1063-651X98)50408-4

PACS numbd(s): 61.41+¢€, 83.10.Nn, 87.16:e

The topological effects of knots play crucial roles in many servations nor theoretical models that would allow the relax-
molecular biological phenomena. It is known that there areation dynamics of cut ring knotted polymers to be predicted,
certain types of enzymegd—3] that act on circular DNA's  our simulation results should be helpful in the study of ring
and produce different types of DNA knots. It would be of polymer topology. The results can be used to formulate the-
great importance to study those nonequilibrium dynamicapretical models or to be compared with experiments. For the
transformation processes for further understanding the furdynamics, we investigate a ring polymer with a certain topo-
damentals of animate nature. Studies of the knotted polymdggical complexity that is initially well equilibrated and then
systems are limited, despite the great advances that ha@t at a randomly picked link. The relaxation processes are
been made in classifying knots and topological invariantgnonitored and analyzed. Our results suggest a possible clas-
[4—7]. Up until now, most studies have concentrated on resification of the relaxation properties of knotted polymers in
lating the topological invariants of knots to the static prop-terms of their similarities on local topology and polynomial
erties of the knotted polymers. Quake developed a phenoniavariants.
enological model8] of the effects of knot complexity onthe ~ The polymer chain studied in the simulation is modeled as
static and dynamic properties in terms of the number of esbeads connected by stiff springs. The interactions between
sential crossing€. The theory has been tested against comthe nonbonded beads are through the square-well potential
puter simulations and was in good agreement with the result
on the average radius of gyration. Attempts to find topologi- *° (r<o)
cal effects on the dynamic properties of knotted polymers are Uyp=4 —& (0=<r<i\o) (1)
rare[8]. Topological constraints are especially important in
most dynamic phenomena proceeding in systems of en- 0 (Ao=r),
tangled polymer coils or knotted ring polymers. The prohi- .
bition against chain crossing in a system restricts the numbé’?’heres and o are the energy anq size paramete_rs, respec-
of its possible conformations to one topological type. ThellVely, andA=1.5. The monomerie and o are units used

only conformations are those that are topologically equivaior the reduced quantities for temperatuie’ kg T/e) and

lent to one another. These conformations can only appear Sistances. The interactions_betw_een bonde_d beads are repre-

disappear via continuous chain deformations. The fact thatented by a cut-off harmonic spring potential as

ring polymers possess topological memory is expected to 1 ; ’ .

h_mder Fhe|r relaxation motions. In this study, Mp_ntt_—z Carlo sz—kaz(——l.z)  1.0<—<1.4. @)

simulations are performed to study the nonequilibrium dy- 2 o o

namic relaxation processes of knotted polymers. Experi-

ments had showfi,3] that a certain link in some ring DNA The potential is infinite elsewhere. We have choketi/s

breaks up upon the action of enzymésuch as topoi- =400. The parameters in the model are chosen to forbid any

somerasgand reconnects again after the switching of inter-bond crossing to occur within the knotted chain. We have

linked strands, resulting in a knot structure. The relaxatiorstudied the knotted polymers up to nine crossings: 8, ,

dynamics of the knotted polymer is therefore important in5,, 5,, 64, 6,, 63, 71, 7», 8;, 91, and some composite

such a process. If the relaxation time is too fast, the knot wilknots. The standard notati¢@] for uniquely labeling a knot

untie itself before the link reconnects again and no knois Cy, whereC is the number of essential crossings &b

structure will result. Since there is neither experimental ob-an index for a particular knot. Figure 1 displays some of the
knot types studied in this worl.* =10 is chosen so that the
system is in the good solvent regime and the Flory value of

* Author to whom correspondence should be addressed. Electronie= 3/5 is used throughout here. The initial configurations are
address: pylai@spl1.phy.ncu.edu.tw generated by growing the chain bead by bead to the desired
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FIG. 1. Schematic knot diagrams. The (3,...), FIG. 2. Average radius of gyration vs the aspect rapd for
(41,61, ...), and the (5,7, ...) groups. The Conway notations knots of various chain lengths. Dotted lines denote slopes4/i5.
of the knots are also shown. Filled symbols represent the prime knots,8,5,,...9,: H, N

=42; A, N=60; @, N=82. Open symbols are composite knats:

length and knot type. The trial moves employed for chaingy=60; O, N=82. For increasing values gf W, 3;, 4,, 5, 6,
are bead displacement motiof8] that involve randomly 6,: A, 3,, 4,, 5;, 5,, 6,, 61, 63, 71, 7, 8, 9;; @, 3, 4,,
picking a bead and displacing it to a new position in thes,, 5,, 6,, 6;, 65, 71, 75, 81, 91; A, 3,:#—3;, 3,#3,, 3,#4,
vicinity of the old position. The new configurations resulting 3,#5,; O, 3,;#—3;, 3;#3;, 3:#4,, 3;#5,, 3;#3,#3,.
from this move are accepted according to the standard Me-
tropolis acceptance criterigrl0]. All runs are equilibrated check this relation and the results are shown in Fig. 2. Two
for several million steps. Measurements for static propertiegroups of knots are observed from our data. One group con-
such as mean radius of gyration are taken over a period d&ins the prime knots (34,,5,,5,,6,,6,,63,7:,7,,8;,9;) and
10°P—4x 1P Monte Carlo stepgMCS) per monomer. The the other group consists of the composite knotg#3®
knotted ring polymer is allowed to equilibrate for a long time (granny, 3;#—3, (square, 3;#4,, and 3#5;. Both of the
before it is cut randomly at one bondtat 0. The nonequi- groups show rather good linear relations with slopes rela-
librium relaxation process is characterized by the time detively close to—4/15. However, the values of the radius of
pendence of the radius of gyratiét(t) as it approaches its gyration for the composite knots are systematically larger
long time limit. Averages over different realizatioftypi-  than the prime knots foN=60 and 82. This indicates that
cally ~300 to 500 of the relaxation processes are per-the static properties are not only determined entirely by the
formed. Time is measured in units of Monte Carlo steps petopological invariantp. The (Ry) of the three-factor com-
monomer. posite knot 3#3,#3;(N=82) is also calculated, which

Quake used the number of crossing®) (to measure the shows an obvious deviation from the group
knot complexity and obtained the scaling law for the radius(3,#3,,3,#4,,3;#5;). This further suggests that a different
of gyration angocN”ClB*V, which was verified by Monte number of factors in the composite knots may result in dif-
Carlo simulations. Howevel is a fairly weak topological ferent groups. Recently, Katritaét al. [13] found that there
invariant. As we know there are seven knots with severexists an exact additivity of the writhe number, but subaddi-
crossings and 166 knots with 10 crossings. The number divity (different degrees of deficits for a different number of
knots increases rapidly with the number of crossings. Grosfactorg of p for composite knots. Thus, it is plausible to
berget al. [11] introduced a topological invariart that is  assume that different groups of knots exist. On the other
the aspect ratio of the lengtiL) to the diameterd) of a  hand, our data for both prime and composite knots dRgy

knotted polymer at its maximum inflated stapesL/d. The  ~N?”, suggesting that this scaling is univer$a#]. How-
more complicated the knot, the greater the vglué\ccord-  ever, it is noted that, ap increases, deviation fronR,
ing to the calculations of Katritclet al. [12], the knot § ~N” p“”15 becomes significant. This is because the polymer

(p=29.3) is less complex than; & p=30.5) and the knot8 is crossing over to the maximal tightened knot regime. In this
(p=37) is more complex than;§ (p=31). p distinguishes regime, the polymer coils up so tightly, almost as a compact
rather well between different knot types and thus is a betteball, andRy becomes independent pfand solvent quality;
topological invariant thai€. Grosberget al. used the classic R, ~N¥2 The uniqueness of this regime is caused by the
Flory approach to estimate the equilibrium polymer size bystrong constraint imposed on the knotted ring conformation.
balancing the rubberlike elasticity and volume interactions As for the studies of nonequilibrium dynamics, we focus
between monomers, and found that] Ry~N"p ~415inthe  only on prime knots. The knotted ring polymer is cut at a
good solvent regime. We have performed simulations tadandomly picked link at=0 and the chain starts to relax
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1.6 T T T T T T T T TABLE I. Table for the different knot groups in this paper with
their Alexander polynomialda(t) and Conway notation<C is the
number of crossings in the kndtis just an algebraic variable.
1.4 .
Knot group Alexander polynomial(t) Conway notation
1.2 1 C1:(31,51,...) (1+t9)/(1+1) C
C1:(4161,...) ¢C C (C-2)(2)
——1—(C—Dt+|= —1]t?
1.0 . 2 2
= C2:(52,72,...) C-1 c-1 (C-2)(2)
—— —(C-2)t+ ——+t?
2 2
0.8 i
0.6 4 i ind?cates_ that the (35, ...) group has the strongest topo-
0, logical hindrance on the relaxation moves among the groups
A studied, which may be related geometrically to the fact that
0.4 y T y T y T y T the knots in this group are (@) tori (i.e., the knot can be
0 10 20 30 40 placed on the surface of a tojughus the topological effects
have much stronger influences on the relaxation dynamics
p (both equilibrium and nonequilibriumthan on the static

properties. By analyzing the Alexander polynomipis(t) ]

of these groups of knots, we find that the knots in each group
have a similar form for their Alexander polynomials param-
etrized by the number of crossing, as listed in Table I.
Then from the form of these polynomial invariants, it is easy
towards the Flory coil conformatioiRy(t) denotes the aver- to see why the relaxation behavior is divided into groups; the
age ofRy(t) over many relaxation realizations and its behav-local topology of a knot determines the relaxation and the
ior as a function oft is monitored. The chains eventually similarity in the local topology is reflected in the same class
reach their final stages, the equilibrium state of the lineabf polynomial invariants. Furthermore, the group
unknotted chain, within the course of our simulation.(3;5,,...), which has a longr, may also be associated
Also, all the relaxation processes can be well fitted into exwith the observation that the degree &ft) increases with
ponential curves. The nonequilibrium relaxation timds C, while for the other two groups thei(t)’s are always of
extracted from the data ofRy(t) by assuming that degree 2. Such a classification of knots into these groups is
[Rg(2) —Ry(t) 1/[Ry() —Ry(0)] decays as expft/7). Itis  further supported by the observation that the Conway nota-
worth mentlomng that Quake in his work on the equilibrium tions[7] of the knots in the same group are parametrized in
relaxation behavior of knotted chaifg], found a long time the same waysee Table)l

mode for all the relaxation curves. He fitted the relaxation The relaxation time data of the (5,,...) group
curves by the sum of two exponentials, with independensmoothly increases as~p*?® (upper solid curve in Fig.)3
magnitudes and relaxation times. Our results on nonequilibwhile the (5,7,,...) group deviates more significantly
rium relaxations do not show an obvious long time mode androm this behavior, but appears to merge with thg'?®

no stretched exponential behavior is observed. Figure Behavior at large (lower solid curve. It can be seen from
shows the variation of versusp for various knotsrfor the  Table | that theA(t)'s of the latter two groups become
trivial knot 0, is also shown for comparison. As shown, asymptotically the same fo€>1 (i.e., largep). Thus we
fluctuates up and down, although the overall trend shows aanticipate that for sufficiently largp, these two groups will
increase inr with increasingp. This suggests that the local have the same~ p*?® relaxation behavior. The local topo-
topological structure plays an equally important role in thelogical effects on the relaxation of these groups can also be
relaxation dynamics of a cut knotted polymer as the degreenderstood in terms of their Conway notations. For the
of compactness does. After careful visual inspection of th€3;,5;,...) group, the essential crossings form a braid to-
knot diagrams, we find that these prime knots can be divideg@hology (see Fig. 1 and the Conway notation is just a single
into groups, based on their topological similarity. Theseinteger denoting the number of crossings in the braid. For the
groups are (3851,...), (4,61,...), (5,7,,...),etc.(see  other two groups, the first integer in the Conway notation is
Fig. 1 for these knot groupslt is somewhat surprising that again the number of crossing€ £ 2) in the braid structure,

3, has a longer relaxation time than 4nd 6,, despite its while the second integer is the number of crossings in the
fewer crossings and a much smaller valugofin the study right part of the knot diagram, which is fixed to be two for
of the equilibrium relaxation behavior of knotted polymers, these two groups. Thus it is easy to see that for large values
Quake[8] also mentioned an obvious slow relaxation fqr 3 of C (and hencep), the relaxation behavior will be domi-
as compared to4 64, 81, 10, for some unknown reason. nated by the braid structure in these knots. Our data sug-
This can be easily interpreted from our classification, sinceyested that the~ p*?® behavior accounts very well for the
3, belongs to the group of longer relaxation. From Fig. 3 werelaxation of the “pure braid” structure in the (%;,...)

can see that the group {5;,...) haslonger relaxation group. The other two groups appear to approach this pre-
times than other groups for knots with the saser p. This  dicted behavior for large values pf

FIG. 3. Monte Carlo data for the nonequilibrium relaxation time
(in units of 1¢ MCS/monomer) v for N=60. Solid curves are
7~p*?5. The lower solid curve is just a guide for the eyes.
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The idea of “creeping motion” of the polymer in an in- probability is greatly increased as the number of crossings
flated tube is employed here to estimate the nonequilibriunncreases. This monomer-monomer friction does not involve
relaxation time. When the chgin i_S cuttat 0, the constraint_ the solvent, but will be somewhat related to the viscosity of
of the “end-to-end” connection is relieved and the chaina fluid of monomers. We use an analog to electric resistance
starts to relax. In good solvents, the chain would tend tqo estimate this internal friction and assume it to be propor-
expand out of its compact structure. However, the prohibitional to the ratio of length to the cross-section area of the
tion against chain crossing hinders the process. This effect igaximally inflated knot. Thusu,=Né&+L¢Z, where ¢
especially obvious in the relatively compact knot. Thus, thex 1/42, Following the idea on the construction of the maxi-
relaxation process can only proceed through a “diffusionmally inflated tube, Grosberet al. [11] obtainedL ~ R,p??
anng_a tube” type _of motion. Howgver, unlike in standard g d~Rgp*1’3~NVp*3’5. Thus u;=Né&+ ¢ N""p®® for
reptation theory15] in which cross-linked network or poly- - some characteristic monomer-monomer frictigrand hence
mer melts are considered and the monomers move in a_) 2/pN2'p¥INg+N""p85¢,]. For fixed p and N
“tube” resulting from the obstacles produced by others.q . N1+2v For fixedN andp> 1, 7~ p'?5. The relation
chains, the topology of the surrounding did not change sig-. p'25 gives a good description for our data in Fig. 3, es-

nificantly in the intermediate time scales. In the present Cas&yecially for the braid structure in the (@) tori group. We
we find that the radius of gyration expands at the same ratg,ye also foundiL4] that ther~ N**2” relation is consistent
as the end-to-end distance does. In other words, the diametgk, o r simulation data for the,3 4,, and 5 knots.

of the “tube” expands accordingly and is also much larger ¢ importance of the topological effect can be further

in the present case. Even so, we believe that for relativelyg iieq from the outcome of a naive attempt to derive for the

complex knots, the creeping move along an inflated tube i$e|ation between- andp in the following. If the knot has a
the dominant part in the relaxation process. Employing thegreater value o (i.e., is more compagtthen simple calcu-

idea of a maximally inflated tubleL1,12] of contour lengtfiL  |a4i5ng show that it has a larger free energy difference from
and cross-section diametdy the average time, taken for e Fiory free coil state, and hence the relaxation process

the chain to creep out of the initial contour lengthcan be g4y proceed faster. But this is contrary to what we find in

evaluated ag~L?/D. The diffusion coefficienD can be  gimylations. This is due to the existence of the free energy
calculated a =kgT/u, wherekg is the Boltzmann con-  paprier that arose from the topological effect and is not ac-
stant andu, is the total friction coefficient. As we know, the o nted for in the naive free energy difference approach. The
frlct|_on coefﬁue_nt for the chain ina tube of solvent is pro- system does not simply just relax downhill to the lower free

portional toN, i.e, N¢, where¢ is the monomer-solvent energy Flory coil state, but has to overcome the barrier due
friction coefficient in the Rouse mod¢lL5]. However, an {4 the topological constraint of entanglements. Thus for the

@nternal frictio_n process is also invollved as the chain V?‘rie%tudy of dynamical properties of knots, the topological effect
its conformations during the relaxation process. For a lineajg g critical factor.

polymer chain, the monomers tend to avoid each other in

good solvents and the probability of two monomers in direct  This research is supported by the National Council of Sci-
contact is small. However, for knotted polymers, monomersence of Taiwan under Grant No. NSC 87-2118-M-008-015.
are in close contact because of the existence of crossing€omputing time, provided by the Simulational Physics
After cutting the knots, monomers will slide onto each otherLaboratory, National Central University, is gratefully ac-

and extra friction will occur during relaxation. The collision knowledged.
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