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Topological effects on statics and dynamics of knotted polymers

Yu-Jane Sheng,1 Pik-Yin Lai,1,* and Heng-Kwong Tsao2
1Department of Physics and Center for Complex Systems, National Central University, Chung-li, Taiwan 320, Republic of Ch

2Department of Chemical Engineering, National Central University, Chung-li, Taiwan 320, Republic of China
~Received 6 November 1997!

Using dynamic Monte Carlo simulations, our results on the radii of gyration of knot polymers suggest that
prime and two-factor composite knots belong to different groups. From the studies of nonequilibrium relax-
ation dynamics on cut prime knots, we find that even prime knots should be classified into different groups,
such as (31,51 , . . . ), (41,61 , . . . ), and (52,72 , . . . ), etc., based on their topological similarity and their
polynomial invariants. By scaling calculations, the nonequilibrium relaxation time is found to increase roughly
asp12/5, wherep is the topological invariant length-to-diameter ratio of the knot at its maximum inflated state.
This prediction is further confirmed by our data.@S1063-651X~98!50408-4#

PACS number~s!: 61.41.1e, 83.10.Nn, 87.10.1e
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The topological effects of knots play crucial roles in ma
molecular biological phenomena. It is known that there
certain types of enzymes@1–3# that act on circular DNA’s
and produce different types of DNA knots. It would be
great importance to study those nonequilibrium dynam
transformation processes for further understanding the
damentals of animate nature. Studies of the knotted poly
systems are limited, despite the great advances that
been made in classifying knots and topological invaria
@4–7#. Up until now, most studies have concentrated on
lating the topological invariants of knots to the static pro
erties of the knotted polymers. Quake developed a phen
enological model@8# of the effects of knot complexity on th
static and dynamic properties in terms of the number of
sential crossingsC. The theory has been tested against co
puter simulations and was in good agreement with the re
on the average radius of gyration. Attempts to find topolo
cal effects on the dynamic properties of knotted polymers
rare @8#. Topological constraints are especially important
most dynamic phenomena proceeding in systems of
tangled polymer coils or knotted ring polymers. The pro
bition against chain crossing in a system restricts the num
of its possible conformations to one topological type. T
only conformations are those that are topologically equi
lent to one another. These conformations can only appea
disappear via continuous chain deformations. The fact
ring polymers possess topological memory is expected
hinder their relaxation motions. In this study, Monte Ca
simulations are performed to study the nonequilibrium d
namic relaxation processes of knotted polymers. Exp
ments had shown@1,3# that a certain link in some ring DNA
breaks up upon the action of enzymes~such as topoi-
somerase! and reconnects again after the switching of int
linked strands, resulting in a knot structure. The relaxat
dynamics of the knotted polymer is therefore important
such a process. If the relaxation time is too fast, the knot
untie itself before the link reconnects again and no k
structure will result. Since there is neither experimental
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servations nor theoretical models that would allow the rel
ation dynamics of cut ring knotted polymers to be predict
our simulation results should be helpful in the study of ri
polymer topology. The results can be used to formulate t
oretical models or to be compared with experiments. For
dynamics, we investigate a ring polymer with a certain top
logical complexity that is initially well equilibrated and the
cut at a randomly picked link. The relaxation processes
monitored and analyzed. Our results suggest a possible
sification of the relaxation properties of knotted polymers
terms of their similarities on local topology and polynomi
invariants.

The polymer chain studied in the simulation is modeled
beads connected by stiff springs. The interactions betw
the nonbonded beads are through the square-well poten

Unb5H ` ~r ,s!

2« ~s<r ,ls!

0 ~ls<r !,

~1!

where« and s are the energy and size parameters, resp
tively, andl51.5. The monomeric« and s are units used
for the reduced quantities for temperature (T* 5kBT/«) and
distances. The interactions between bonded beads are r
sented by a cut-off harmonic spring potential as

Ub5
1

2
ks2S r

s
21.2D 2

, 1.0,
r

s
<1.4. ~2!

The potential is infinite elsewhere. We have chosenks2/«
5400. The parameters in the model are chosen to forbid
bond crossing to occur within the knotted chain. We ha
studied the knotted polymers up to nine crossings: 31 , 41 ,
51 , 52 , 61 , 62 , 63 , 71 , 72 , 81 , 91 , and some composite
knots. The standard notation@7# for uniquely labeling a knot
is CK , whereC is the number of essential crossings andK is
an index for a particular knot. Figure 1 displays some of
knot types studied in this work.T* 510 is chosen so that th
system is in the good solvent regime and the Flory value
n53/5 is used throughout here. The initial configurations
generated by growing the chain bead by bead to the des
ic
R1222 © 1998 The American Physical Society
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length and knot type. The trial moves employed for cha
are bead displacement motions@9# that involve randomly
picking a bead and displacing it to a new position in t
vicinity of the old position. The new configurations resultin
from this move are accepted according to the standard
tropolis acceptance criterion@10#. All runs are equilibrated
for several million steps. Measurements for static proper
such as mean radius of gyration are taken over a perio
106– 43106 Monte Carlo steps~MCS! per monomer. The
knotted ring polymer is allowed to equilibrate for a long tim
before it is cut randomly at one bond att50. The nonequi-
librium relaxation process is characterized by the time
pendence of the radius of gyrationRg(t) as it approaches its
long time limit. Averages over different realizations~typi-
cally ;300 to 500! of the relaxation processes are pe
formed. Time is measured in units of Monte Carlo steps
monomer.

Quake used the number of crossings (C) to measure the
knot complexity and obtained the scaling law for the rad
of gyration asRg}NnC1/32n, which was verified by Monte
Carlo simulations. However,C is a fairly weak topological
invariant. As we know there are seven knots with sev
crossings and 166 knots with 10 crossings. The numbe
knots increases rapidly with the number of crossings. Gr
berg et al. @11# introduced a topological invariantp that is
the aspect ratio of the length (L) to the diameter (d) of a
knotted polymer at its maximum inflated state,p5L/d. The
more complicated the knot, the greater the valuep. Accord-
ing to the calculations of Katritchet al. @12#, the knot 61
(p529.3) is less complex than 63 (p530.5) and the knot 81
(p537) is more complex than 819 (p531). p distinguishes
rather well between different knot types and thus is a be
topological invariant thanC. Grosberget al. used the classic
Flory approach to estimate the equilibrium polymer size
balancing the rubberlike elasticity and volume interactio
between monomers, and found that@11# Rg;Nnp24/15 in the
good solvent regime. We have performed simulations

FIG. 1. Schematic knot diagrams. The (31,51 , . . . ),
(41,61 , . . . ), and the (52,72 , . . . ) groups. The Conway notation
of the knots are also shown.
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check this relation and the results are shown in Fig. 2. T
groups of knots are observed from our data. One group c
tains the prime knots (31,41,51,52,61,62,63,71,72,81,91) and
the other group consists of the composite knots: 31#31
~granny!, 31#231 ~square!, 31#41 , and 31#51 . Both of the
groups show rather good linear relations with slopes re
tively close to24/15. However, the values of the radius
gyration for the composite knots are systematically lar
than the prime knots forN560 and 82. This indicates tha
the static properties are not only determined entirely by
topological invariantp. The ^Rg& of the three-factor com-
posite knot 31#31#31(N582) is also calculated, which
shows an obvious deviation from the grou
(31#31,31#41,31#51). This further suggests that a differen
number of factors in the composite knots may result in d
ferent groups. Recently, Katritchet al. @13# found that there
exists an exact additivity of the writhe number, but subad
tivity ~different degrees of deficits for a different number
factors! of p for composite knots. Thus, it is plausible t
assume that different groups of knots exist. On the ot
hand, our data for both prime and composite knots obeyRg
;Nn, suggesting that this scaling is universal@14#. How-
ever, it is noted that, asp increases, deviation fromRg
;Nnp24/15 becomes significant. This is because the polym
is crossing over to the maximal tightened knot regime. In t
regime, the polymer coils up so tightly, almost as a comp
ball, andRg becomes independent ofp and solvent quality;
Rg;N1/3. The uniqueness of this regime is caused by
strong constraint imposed on the knotted ring conformati

As for the studies of nonequilibrium dynamics, we foc
only on prime knots. The knotted ring polymer is cut at
randomly picked link att50 and the chain starts to rela

FIG. 2. Average radius of gyration vs the aspect ratio (p) for
knots of various chain lengths. Dotted lines denote slopes of24/15.
Filled symbols represent the prime knots 31,41,51 , . . . 91 : j, N
542; m, N560; d, N582. Open symbols are composite knots:n,
N560; s, N582. For increasing values ofp: j, 31 , 41 , 51 , 61 ,
63 ; m, 31 , 41 , 51 , 52 , 62 , 61 , 63 , 71 , 72 , 81 , 91 ; d, 31 , 41 ,
51 , 52 , 62 , 61 , 63 , 71 , 72 , 81 , 91 ; n, 31#231 , 31#31 , 31#41 ,
31#51 ; s, 31#231 , 31#31 , 31#41 , 31#51 , 31#31#31 .
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towards the Flory coil conformation.Rg(t) denotes the aver
age ofRg(t) over many relaxation realizations and its beha
ior as a function oft is monitored. The chains eventual
reach their final stages, the equilibrium state of the lin
unknotted chain, within the course of our simulatio
Also, all the relaxation processes can be well fitted into
ponential curves. The nonequilibrium relaxation timet is
extracted from the data ofRg(t) by assuming that
@Rg(`)2Rg(t)#/@Rg(`)2Rg(0)# decays as exp(2t/t). It is
worth mentioning that Quake, in his work on the equilibriu
relaxation behavior of knotted chains@8#, found a long time
mode for all the relaxation curves. He fitted the relaxat
curves by the sum of two exponentials, with independ
magnitudes and relaxation times. Our results on nonequ
rium relaxations do not show an obvious long time mode a
no stretched exponential behavior is observed. Figur
shows the variation oft versusp for various knots.t for the
trivial knot 01 is also shown for comparison. As shown,t
fluctuates up and down, although the overall trend shows
increase int with increasingp. This suggests that the loca
topological structure plays an equally important role in t
relaxation dynamics of a cut knotted polymer as the deg
of compactness does. After careful visual inspection of
knot diagrams, we find that these prime knots can be divi
into groups, based on their topological similarity. The
groups are (31,51 , . . . ), (41,61 , . . . ), (52,72 , . . . ), etc.~see
Fig. 1 for these knot groups!. It is somewhat surprising tha
31 has a longer relaxation time than 41 and 61 , despite its
fewer crossings and a much smaller value ofp. In the study
of the equilibrium relaxation behavior of knotted polyme
Quake@8# also mentioned an obvious slow relaxation for1
as compared to 41 , 61 , 81 , 101 for some unknown reason
This can be easily interpreted from our classification, sin
31 belongs to the group of longer relaxation. From Fig. 3
can see that the group (31,51 , . . . ) has longer relaxation
times than other groups for knots with the sameN or p. This

FIG. 3. Monte Carlo data for the nonequilibrium relaxation tim
~in units of 105 MCS/monomer) vsp for N560. Solid curves are
t;p12/5. The lower solid curve is just a guide for the eyes.
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indicates that the (31,51 , . . . ) group has the strongest topo
logical hindrance on the relaxation moves among the gro
studied, which may be related geometrically to the fact t
the knots in this group are (2,C) tori ~i.e., the knot can be
placed on the surface of a torus!. Thus the topological effects
have much stronger influences on the relaxation dynam
~both equilibrium and nonequilibrium! than on the static
properties. By analyzing the Alexander polynomials@D(t)#
of these groups of knots, we find that the knots in each gr
have a similar form for their Alexander polynomials param
etrized by the number of crossingC, as listed in Table I.
Then from the form of these polynomial invariants, it is ea
to see why the relaxation behavior is divided into groups;
local topology of a knot determines the relaxation and
similarity in the local topology is reflected in the same cla
of polynomial invariants. Furthermore, the grou
(31,51 , . . . ), which has a longt, may also be associate
with the observation that the degree ofD(t) increases with
C, while for the other two groups theirD(t)’s are always of
degree 2. Such a classification of knots into these group
further supported by the observation that the Conway no
tions @7# of the knots in the same group are parametrized
the same way~see Table I!.

The relaxation time data of the (31,51 , . . . ) group
smoothly increases ast;p12/5 ~upper solid curve in Fig. 3!,
while the (52,72 , . . . ) group deviates more significantl
from this behavior, but appears to merge with the;p12/5

behavior at largep ~lower solid curve!. It can be seen from
Table I that theD(t)’s of the latter two groups becom
asymptotically the same forC@1 ~i.e., largep). Thus we
anticipate that for sufficiently largep, these two groups will
have the samet;p12/5 relaxation behavior. The local topo
logical effects on the relaxation of these groups can also
understood in terms of their Conway notations. For t
(31,51 , . . . ) group, the essential crossings form a braid
pology ~see Fig. 1! and the Conway notation is just a sing
integer denoting the number of crossings in the braid. For
other two groups, the first integer in the Conway notation
again the number of crossings (C22) in the braid structure,
while the second integer is the number of crossings in
right part of the knot diagram, which is fixed to be two fo
these two groups. Thus it is easy to see that for large va
of C ~and hencep), the relaxation behavior will be domi
nated by the braid structure in these knots. Our data s
gested that thet;p12/5 behavior accounts very well for th
relaxation of the ‘‘pure braid’’ structure in the (31,51 , . . . )
group. The other two groups appear to approach this p
dicted behavior for large values ofp.

TABLE I. Table for the different knot groups in this paper wit
their Alexander polynomialsD(t) and Conway notations.C is the
number of crossings in the knot.t is just an algebraic variable.

Knot group Alexander polynomialD(t) Conway notation

C1 :(31,51 , . . . ) (11tC)/(11t) C
C1 :(41,61 , . . . ) C

2
212~C21!t1SC2 21Dt2 (C22)(2)

C2 :(52,72 , . . . ) C21

2
2~C22!t1

C21

2
t2

(C22)(2)
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The idea of ‘‘creeping motion’’ of the polymer in an in
flated tube is employed here to estimate the nonequilibr
relaxation time. When the chain is cut att50, the constraint
of the ‘‘end-to-end’’ connection is relieved and the cha
starts to relax. In good solvents, the chain would tend
expand out of its compact structure. However, the proh
tion against chain crossing hinders the process. This effe
especially obvious in the relatively compact knot. Thus,
relaxation process can only proceed through a ‘‘diffus
along a tube’’ type of motion. However, unlike in standa
reptation theory@15# in which cross-linked network or poly
mer melts are considered and the monomers move
‘‘tube’’ resulting from the obstacles produced by oth
chains, the topology of the surrounding did not change s
nificantly in the intermediate time scales. In the present c
we find that the radius of gyration expands at the same
as the end-to-end distance does. In other words, the diam
of the ‘‘tube’’ expands accordingly and is also much larg
in the present case. Even so, we believe that for relativ
complex knots, the creeping move along an inflated tub
the dominant part in the relaxation process. Employing
idea of a maximally inflated tube@11,12# of contour lengthL
and cross-section diameterd, the average timet, taken for
the chain to creep out of the initial contour lengthL, can be
evaluated ast;L2/D. The diffusion coefficientD can be
calculated asD5kBT/m t where kB is the Boltzmann con-
stant andm t is the total friction coefficient. As we know, th
friction coefficient for the chain in a tube of solvent is pr
portional to N, i.e., Nj, where j is the monomer-solven
friction coefficient in the Rouse model@15#. However, an
internal friction process is also involved as the chain var
its conformations during the relaxation process. For a lin
polymer chain, the monomers tend to avoid each othe
good solvents and the probability of two monomers in dir
contact is small. However, for knotted polymers, monom
are in close contact because of the existence of cross
After cutting the knots, monomers will slide onto each oth
and extra friction will occur during relaxation. The collisio
m
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probability is greatly increased as the number of crossi
increases. This monomer-monomer friction does not invo
the solvent, but will be somewhat related to the viscosity
a fluid of monomers. We use an analog to electric resista
to estimate this internal friction and assume it to be prop
tional to the ratio of length to the cross-section area of
maximally inflated knot. Thusm t5Nj1Lz, where z
}1/d2. Following the idea on the construction of the max
mally inflated tube, Grosberget al. @11# obtainedL;Rgp2/3

and d;Rgp21/3;Nnp23/5. Thus m t5Nj1zoN2np8/5 for
some characteristic monomer-monomer frictionzo and hence
t;L2/D;N2np4/5@Nj1N2np8/5zo#. For fixed p and N
@1, t;N112n. For fixedN andp@1, t;p12/5. The relation
t;p12/5 gives a good description for our data in Fig. 3, e
pecially for the braid structure in the (2,C) tori group. We
have also found@14# that thet;N112n relation is consistent
with our simulation data for the 31 , 41 , and 51 knots.

The importance of the topological effect can be furth
verified from the outcome of a naive attempt to derive for t
relation betweent and p in the following. If the knot has a
greater value ofp ~i.e., is more compact!, then simple calcu-
lations show that it has a larger free energy difference fr
the Flory free coil state, and hence the relaxation proc
should proceed faster. But this is contrary to what we find
simulations. This is due to the existence of the free ene
barrier that arose from the topological effect and is not
counted for in the naive free energy difference approach.
system does not simply just relax downhill to the lower fr
energy Flory coil state, but has to overcome the barrier
to the topological constraint of entanglements. Thus for
study of dynamical properties of knots, the topological effe
is a critical factor.
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